Show simple item record

dc.contributor.authorWheeler, Erlan III
dc.date.accessioned2017-03-01T16:00:05Z
dc.date.available2017-03-01T16:00:05Z
dc.date.created2016-05-31
dc.date.issued2016
dc.identifier.urihttp://hdl.handle.net/123456789/2634
dc.description.abstractWe define two different simplicial complexes, the common divisor simplicial complex and the prime divisor simplicial complex, from a set of integers, and explore their similarities. We will show that if one is connected, then the other is connected. We will also show that for any given set of integers, the fundamental groups of the resulting simplicial complexes are isomorphic.en
dc.description.sponsorshipCarthage College Mathematics Departmenten
dc.language.isoen_USen
dc.subjectAbstract Algebraen
dc.subjectTopology
dc.subjectAlgebraic Topology
dc.subjectFundamental Group
dc.subjectSimplicial Complex
dc.subjectsimplex
dc.titleFundamental Groups of Simplicial Complexesen
dc.typeThesisen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record