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Abstract

A new numerical method for calculating the Young’s modulus of carbon nanotubes which
avoids ambiguities that have plagued other attempts is validated. Molecular dynamics
simulations that utilize the Tersoff Potential are used to model various single-walled
carbon nanotubes under different strains to achieve this validation. Data is taken from
an armchair, zigzag, and chiral carbon nanotube. The calculated Young’s moduli are all
around Y = 1 TPa, in agreement with existing experimental data.

1 Introduction

Carbon nanotubes (CNTs) were discovered in 1952 by L. V. Radushkevich and V. M.
Lukyanovich, but they were not brought to the attention of the scientific community until
1991, when Sumio Iijima discovered CNTs in the soot of graphite electrodes after an arc
discharge [1]. Since then, the exciting properties of CNTs have led to a host of proposed
applications, many of which are currently being realized.

A convenient way to think about CNTs is to think of them as a sheet of graphene rolled up
into a tube and capped on either end with a part of a buckyball. Graphene is a hexagonal
lattice of carbon atoms connected by sp? bonds. Multiple stacked sheets of graphene compose
the common form of carbon called graphite. A buckyball is a carbon molecule in the shape
of a sphere. The CNT is capped in such a way so that every carbon atom is bonded to three
other carbon atoms.

The way that the graphene is rolled up determines what is called the chirality of the nanotube.
CNTs can be grouped into three categories based on chirality: armchair, zigzag, and chiral
(Fig. 1). Armchair CNTs contain carbon-carbon bonds which are perpendicular to the tube’s
axis, while zigzag CNTs contain bonds that are parallel to the tube’s axis. Chiral CNTs
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Figure 1: An example of each of the three types of CNT chiralities [2].

contain bonds neither perpendicular nor parallel to the axis of the tube. Each category is
named for the nanotubes’ edge pattern.

Each CNT can be uniquely identified with the index pair (n,m), n > m. All armchair CNTs
have index pairs of the form (n,0), and all zigzag CNTs have index pairs of the form (n,n).
A great deal of useful information is contained in the index pair. For example, the radius of
a given CNT is
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where the carbon-carbon bond length [ = 1.42 A[3].

Carbon nanotubes demonstrate a number of unique properties. They are the stiffest material
known, yet they are also very bendable [4, 5]. CNTs are only a few nanometers in diameter,
but they can range in length from a few nanometers to 18 centimeters [6]. Depending on
the tube geometry and the strain that the nanotube is experiencing, CNTs can be either
metallic or semiconducting [7]. CNTs can also be nested inside one other to create multi-
walled carbon nanotubes (MWCNTSs). Carbon nanotubes without other nanotubes nested
within them are referred to as single-walled carbon nanotubes (SWCNTSs) to differentiate
them from MWCNTs.

The proposed applications of CNTs promise to affect fields such as nanotechnology, materials
science, and electronics [8, 9, 10, 11]. They range from space elevator cables to synthetic
muscles [8, 9]. Although many of these applications have not yet come to fruition, advances
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in the application of CNTs have already been made. For example, carbon nanotubes are
already used to make various composite materials stronger and more stiff, and their addition
to motors and transistors is rapidly allowing motors and transistors to become smaller than
they have ever been before [10, 11].

Unfortunately, production and characterization problems currently hinder the advancement
of CNT applications. The current method of CNT production, for example, is still relatively
primitive. CNTs can easily be produced, but at the moment it is all but impossible to
specifically create large quantities of nanotubes with a predetermined chirality or length
[12]. Widespread use of carbon nanotubes requires cost-effective and reliable methods of
production, but at the moment such methods of production have not been discovered.

A second problem hindering the application of CNTs is the uncertainty surrounding their
mechanical properties. Many of the values that are used to describe mechanical properties of
materials have traditionally assumed that the material being described is macroscopic. The
microscopic nature of CN'Ts poses new challenges to the definition of the aforementioned
values that have not yet been resolved. In this paper, validation is provided to a new
characterization of one of the most important values, Young’s modulus, which circumvents
many of the problems that have hampered previous attempts to precisely define it.

2  Young’s Modulus

2.1 Background

Young’s modulus is a value associated with a material that represents that material’s stiffness.
In other words, Young’s modulus relates the stress applied to the material with the resulting
strain of the material. The Young’s modulus of a material must be known before the material
can be used in many practical applications, but there is currently disagreement over how to
define Young’s modulus for carbon nanotubes.

This disagreement stems mostly from the fact that Young’s modulus is only properly de-
fined for continuous materials, while CNTs are crystalline materials. For continuous, bulk
materials, Young’s modulus is defined as Y = Z, where o is the axial stress and ¢ is the
axial strain. Axial stress, in turn, can be written as o = %, where [ is the force applied
over the cross-sectional area A (Fig. 2). Young’s modulus, therefore, requires an unambigu-
ous cross-sectional area. For continuous materials, defining the cross-sectional area is quite

simple. For discrete materials such as carbon nanotubes, however, this task is ambiguous.
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Figure 2: Young’s Modulus for continuous materials [13]. Axial strain ¢ = 5*, To

2.2 Methods of Defining Young’s Modulus

The cross-sectional area of carbon nanotubes is ambiguous for two main reasons. The first
reason is that the force is not applied uniformly, but is applied at discrete points due to the
CNTSs’ crystalline structure. The second reason is that the discrete points to which the force
is applied are distributed around the circumference of the nanotube, not uniformly across
the entire cross-sectional area.

The cross-sectional area of CNTs has been defined differently by different researchers. A
common definition of the cross-sectional area is that of a solid cylinder or prism [14]. Another
popular definition of A is that of a hollow cylinder with a thickness [14].! Still others have
opted to define the much more straightforward circumference instead of the troublesome
cross-sectional area [14]. This method views the CNT as basically one-dimensional and
produces a value called the surface Young’s modulus. This surface Young’s modulus is
applicable in some situations, but it is not the same value as Young’s modulus and so
doesn’t completely solve the original problem of defining Y.

2.3 The Second Derivative of the Strain Energy Density

These different methods of defining A predictably produce different values of Young’s moduli.
Young’s modulus is supposed to be a constant of the material, so these attempts to define
the cross-sectional area seemingly fail. But recently, an application from elastics has led to
a new method of defining Young’s modulus for CNTs to be proposed. This new method
defines Young’s modulus as the second derivative of the strain energy density with respect

13.4 A is the most common thickness, since it is the distance of separation between layers of graphene in
graphite. Other values have also been used, though.



to the axial strain [14]. This method circumvents the problem of having to define the cross-
sectional area of CNTs and so has the potential to finally and definitively define Young’s
modulus.

In the case of carbon nanotubes under axial strain, the strain energy of the CN'T is its internal
elastic potential energy. The internal elastic potential energy U, of a CNT experiencing axial
strain is
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where A is the cross-sectional area, Ly is the initial length, AL is the change in length, and
Y is Young’s modulus. The internal elastic potential energy per unit volume, or the internal
elastic potential energy density, can be written as
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and then take the second derivative or the internal elastic potential energy density, or strain

energy density, with respect to strain to find Young’s modulus: % =Y.

3 Method

3.1 Molecular Dynamics Simulation

Molecular dynamics simulations are a type of simulation program that models materials on
the molecular scale. These programs first read a potential that describes the interactions
between atoms, as well as information on atomics masses, initial positions, and initial veloc-
ities. From this information, the programs calculate the force on each atom due to atoms
around it. Then, the programs solve for the acceleration of each particle and perform a
double integration to find the change in position of each atom. Finally, the programs apply
the position changes and repeat the process as many times as required.

A molecular dynamics simulation tool called XMD was utilized to create a program that
simulates SWCNTSs experiencing strain [15]. After creating the nanotube, the program sets
the temperature of the nanotube, and also implements the Tersoff Potential to model the



interactions between the carbon atoms. The program allows the CNT to reach mechanical
equilibrium, and then begins to gradually increase the strain that the CNT is under until
the CNT reaches maximum strain.? Inputs for the final program include chirality, length of
CNT, duration of incremental strain increase, maximum strain, and temperature. Outputs
include particle displacement, the product of internal stress and atomic volume, and internal
potential energy, which in this case is also the strain energy. Data was gathered from
three SWCNTs: a (5,5) armchair CNT, a (9,0) zigzag CNT, and a (6,4) chiral CNT. The
temperature was set to 7' = 0 K.

3.2 Finite Size Scaling Analysis

Molecular dynamics simulations produce reliable results only when edges and boundaries are
not a significant portion of the material being simulated. In other words, simulations which
model materials that are too small usually produce nonphysical results. So, in order to run
an efficient simulation that still produces reliable results, the molecular dynamics program
should be made to simulate CN'T's with the shortest length that still produces realistic data.
In order to find this optimum length, finite size scaling analysis is necessary.

The XMD program requires that the length of a CNT be inputted in terms of unit lengths
that are determined by the program. The length of a unit length changes for each CNT, as
it is dependent on chirality of the nanotube. For the (5,5) armchair CNT the unit length
is about 3.566 nm, for the (9,0) zigzag CNT the unit length is about 3.692 nm, and for
the (6,4) chiral CNT the unit length is about 3.689 nm. Young’s moduli for CNTs of unit
lengths 1-7 were calculated (Fig. 3). The Young’s moduli for lengths of 1-3 units were all
quite large. Starting with lengths of 4 units, though, the calculated Young’s moduli ceased
to change dramatically, although they slowly begin to increase. Since CNTs with lengths
of 4 units are the shortest CNTs that follow this trend, they are most likely the nanotubes
with the smallest length that can reliably model actual CNTs.

4 Results and Analysis

After plotting the strain against the strain energy, the second derivative of the graph’s best
fit parabola was taken to find the product of Young’s modulus and atomic volume.®> The
average atomic volume can be easily calculated from the particle displacement data, so it
was divided out to calculate Young’s modulus.

2Mechanical equilibrium is defined in this case as the state of the CNT in which the internal poten-
tial energy of the CNT is constant. Experimentation determined that CNTs in the XMD program reach
mechanical equilibrium after 2.5 * 10710 seconds.

3The output from the XMD program was strain energy, not strain energy density. This is why, after
taking the second derivative, the resulting value was not Young’s modulus, but was the product of Young’s
modulus and atomic volume.
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Figure 3: Young’s moduli for the three CNT chiralities of different lengths. The maximum
strain that the CNTs experienced in the simulation that produced the data for this graph
was .01, but very similar trends appeared in simulations of CNTs under all levels of strain.



(5,5) armchair CNT
958571 £ .04928 TPa

(9,0) zigzag CNT
1.14569 4+ .04615 TPa

(6,4) chiral CNT
987279 £ .03549 TPa

Table 1: Estimated values for Young’s modulus of CNTs calculated with the definition of Y.

(5,5) armchair CNT
954444 + .04797 TPa
(9,0) zigzag CNT
1.12272 4+ .06231 TPa
(6,4) chiral CNT
967868 £ .04884 TPa

Table 2: Values for Young’s modulus of CNTs under various strains calculated with the new
method.

In order to check the reliability of the simulations that produced these results, Young’s
modulus was also derived by using the definition of Young’s modulus: ¥ = Z. Since the
internal stress is a response to the strain, the applied axial stress o could be estimated from
it. Then, the strain € was graphed against the stress o, and the slope of the resulting line,
which is Young’s modulus Y, was calculated. Only resulting lines that had R? > .999 were
considered valid and below the yield point of the CNT, and so only CNTs experiencing
strains of .04 or less were considered. The results of this check are listed in Table 1.

The resulting Young’s moduli from the simulations are listed in Table 2. They correlate
closely with the data in Table 1, confirming the accuracy of the results. Experimental data
sets the estimated Young’s modulus of any given CNT is around 1 TPa [3]. So, the results
in Table 2 are also in agreement with the experimental data.

5 Future Directions

The XMD program created for this project can be used as a base for many other simulations
involving CNTs. For example, future work could examine the effects of temperature or
chirality on Young’s modulus. Since the program created during this project and the results
it produced are reliable, the relationship between applied axial stress and the resulting axial
strain can be calculated for CNTs of any chirality. This ability to correlate stress and
strain removes one of the major obstacles preventing the use of CNTs in many practical
applications. Now that more is known about the mechanical properties of CNTs, future
work could begin to relate the mechanical properties with other properties of CNTs, such as
electrical properties of the nanotubes.
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